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ABSTRACT /1%

The author has undertaken in a very general form an
exposition of the principles of rational mechanics which
constitute the basis of inertial navigation. He has shown
how closely the accuracy characteristic of this form
of navigation is linked with the structure of
the gravitational field in which the vehicle moves.
Applications to ballistic missile guidance, aircraft and
ship detection, and space mission control are discussed
briefly in the light of general principles, with a detailed
technical description avoided.

l. Introduction

We are all familiar with the episcde, cceasicnally found in detective
fiction, in which the kidnap victim, transported blindfolded in an auto-
mobile, succeeds in reconstructing and retracing the route travelled on the
basis of the muscular impressions experienced during turns and directional
changes, as well as through the actions of the driver on the brake pedal and
accelerator. This process, a not altogether fanciful one, provided the
victim is well acquainted with the region in question, constitutes a /2
rudimentary effort at inertial guidance.

In a more elaborate form, the precise measurement of accelerations
through an internal procedure and their double integration with a view toward
the derivation of the velocity and positional variables has long appeared to
be an elegant, if somewhat utopian, method of fixing the position of a
moving object. Inertial navigation in its most radical embodiment, that is
when it borrows nothing from other navigational techniques, is essentially
based on experimental manipulations effected on board the vehicle, and
requires no links of any kind with the outside world. It is, therefore, in
effect - "endonavigation", to use the term which was first applied to it -

¥Numbers given in the margin indicate the pagination in the original foreign
text.
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we believe - by Professor Roccard and which perhaps defines it more nicely
than its customary appellation.

The autonomy conferred on the vehicle by inertial navigation is quite
obviously a particularly attractive feature in the case of military applica~-
tions. It is precisely these applications, in fact, which have led to the
major technological effort, the result of which, for this technique, can
be seen in the spectacular breakthroughs which have been achieved in limited
but important areas.

It has occurred to us that it might be of interest to present to the
Assoclation, without undertaking a detailed description of instrumentation -
something both beyond the desirable scope of a paper of this type and outside
the competence of its author - , some reflections of a general nature with
respect to the mechanical fundamentals of inertial navigation, the principal
difficulties encountered in its implementation, the forms which it may assume

according to its varying applications, and finally its prospects for further
development.

2. Fundamental Principles

Given a vehicle (Fig. 1), to which we assign the triangulation reference
point 0y, x, ¥y, z, we shall understand by navigation the continuous and
instantaneous determination of the coordinates of one point of the vehicle,
0, for example, with respect to an external marker Oxyz, which we shall
assume to be Galilean. The anticipated precision of the operation is such,
moreover, that in general no interest attaches to any discussion of the
precise selection of point 0. Navigation in the context, therefore, is
limited to a real-time location - of the moving object. It is, of course,
quite true that the idea of navigation, as generally understood, brings to
mind a more extensive operation, involving the actions which the navigator,
apprised of his position, exerts upon the movement of his vessel with an eye
toward rendering that movement consistent with his desire or with the
requirements of the mission which has been entrusted to him. Despite the
linguistic (or semantic) ambiguity inherent in this usage, we prefer to
reserve the term "guidance" for this all-encompassing operation, while
employing the word "navigation" in its narrowest sense, i.e., that of
the determination of the fix, to borrow an expression from naval parlance.

Suppose that within the vehicle we place a small test mass m, free of
all connection (in the sense of rational mechanics) with the vehicle, but
subject to a single force F, which is perfectly controllable and measurable
by an on-board operator. Suppose further that this operator (or a mechanical
mechanism acting in his stead) possesses reflexes fast enough to keep mass m
continuously within the vehicle through proper manipulation of force F. If
care is taken to note the value of F gt each instant, the acceleration ? of
the mass m will be known through ? = F, and if the initial position and

m



velocity of this mass are known, it will be possible to calculate, at any
instant through double integration, the absolute position of mass m, thus of
,a point interior to the vehicle, thus of the vehicle itself. This computation
is expressed by the equation

(1)

r S
E=0

where T is the vector linking the origin to point P occupied by m and the
derivation is carried out with respect to the absolute reference.

™

Examining the matter a bit more closely, it is evident that the success
of the preceeding operation raises three fundamental questions.

1) It is first of all essential that the measurements and computations be
carried out with a degree of accuracy sufficient to ensure that the accuracy
of the result will be acceptable, despite the clearly cumulative nature of
the errors.

2) In the second place, it should be noted that the acceleration ?
can be measured only by its components in the trihedral based on the vehicle,
while the integration must deal with the components in the fixed trihedral.
It is thus important to know the orientation of the moving trihedral with
respect to the fixed. Positional or linear inertial navigation presupposes
the solution of g roblem of orientational or angular navigation. If the
principle of endonavigation is to be safeguarded and maintained throughout,
this operation must itself resort to inertial procedures. On the other hand,
if we are willing to accept a departure from this principle with respect to this
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particular point, then a very general procedure which suggests itself for the
determination of the orientation of the moving trihedral might take the form
.of star sightings, that is the measurement of the directional parameters of
two stars within the moving trihedral.

3) Thirdly, the procedure presupposes an ability to measure, if not to
control, the forces of every kind which are brought to bear on mass m. If
among these forces there is an uncontrollable but known force, it can always
be compensated by the action of the controllable forces. On the other hand,
if they include an unknown force, the method is not workable.

2-3

Disregarding for the time being the question of precision and operating
on the assumption that the angular navigation problem has been resolved
through the application of an arbitrary procedure, let us consider this last
point with greater attention. Among the forces naturally brought to bear on
mass m, certain of them originate at points which are part of the system; in
principle, a knowledge of these forces presents no difficulties. Others are
remote actions emanating from points outside the system. Among this
latter category, the intervention of magnetic or electrical forces can always
be avoided through the selection of a test mass containing no magnetic or
electrical charge; gravitational forces, however, cannot be eliminated.

>

Let g be the gravity field at point P which is the site of mass m¥. With
F representing the force controlled by the navigator, the equation of motion
for P is written:

.

&r o
dt’°F+mg
or, continuing to set oo )
— =7
m_
. |
&dr - -
e +-gt ‘ (2)

>
Y, the ratio of the !sensible" force F to the test mass m, has the dimensions
of an acceleration. We shall refer to it as "sensible acceleration."

Let us consider the consequences of the above from the point of view of
navigation.

- If we know nothlng concerning the grav1tat10nal field g, it is impossi-
ble to proceed from Y to the actual acceleration &2 r. Inertial techniques are
dt2

*¥A more precise expression would be "the field of Newtonian attraction due
to masses in the universe other than those which are part of the vehicle."
Practically speaking, moreover, the vehicle mass attraction is negligible.



therefore of no value to a navigator moving in an unknown gravitational field.

~ Conversely, if the gravitational field is known at every point, that is
if we accept g(r) as a given function, Eq. (2) assumes the form:

‘;._:_’f - -g.(_;) =Y (3)

Vector ¥ is a priori unknown, but measurable. It thus takes the form of a
given function of time.

>
Vector g is not measurable, but known as a priori as a function of space.

The problem of inertial navigation is therefore solvable. It reduces to
the solution of a second-order differential equatlon (three scalar
equations) in which the measured acceleration y serves as the second term.

2.4

The foregoing conclusions can be presented in somewhat more scientific
language by turning to the principles of the mechanics of relative motion,
a review of which, in any event, seems not inappropriate.

We are aware that if we distinguish at point P the mass m itself and the
material position of the vehicle with which it coincides at the instant considered,
the theorem for the composition of accelerations, derived from pure kinematics, Lé
is expressed by the equality:

_;¢=-Y’r+;s+2wo/\v'¥

where ?a is the absolute acceleration and ¥y is the relative acceleration of
mass m,
>

Y. is the drive acceleration (impulsive acceleration), that is the
absolute acceleration of the vehicle coinciding with m,

w. is the angular drive velocity (angular impulsive velocity), that is
the angular velocity of the moving trihedral,

-3
V, 1s the relative velocity of mass m.

The fundamental dynamics relation applied to point m

_15‘+m-£=m‘—f.¢

is written as follows:



P+m[g—y,—2wAV,]—m7,

‘and may be interpreted through the following statement:

"The fundamental dynamic relation F = my is applicable to movement
determined with respect to any trihedral, on the condition that for the
gravitational field due to Newtonian attraction alone there is substituted an
apparent gravitational field defined by:

-

g’:g_;‘_zg/\ V,..‘

This field has the particular feature of encompassing a term which
is a function of the relative velocity, since the driving (impulsive) move-
ment is not purely transiational.

If in the procedure described above the conditions were to be made more
severe by requiring that mass m remain in a state of relative rest within the
vehicle (which would necessitate greater vigilance on the part of the operator
or a negligible degree of error), the acceleration of the
mass and that of the coincident point could be regarded as identical. The
instrument which until this moment was measuring only its own sensible acceler-
ation is now measuring the acceleration of a specific point within the wvehicle.
This instrument is called an accelerometer. It is important, however, not to
lose sight of the fact that, despite its misleading name, the accelerometer
does not actually measure the absolute acceleration, but rather the sensible

>
accelerat10n+Ye - g or, by simply changing the sign of the scalar, the apparent
gravity g - Ye. The impossibility of separating & and Ye by means of an
internal operation is an unavoidable consequence of the identity of the
gravitational and inertial masses.

Let us further note that if the accclerometer is positioned at the in-
ertial center of the vehicle, its readings are subject to another interesting
interpretation. IfiF:is the resultant of the sensible external forces acting /T
on the vehicle of mas$ M, according to the theorem for the movement of the
center of inertia we have:

F 4+ Mg = My, |
whence

-

Yo — § =

=%l

Thus, the accelerometer measures that part of the vehicle's acceleration
which is due to non-gravitational forces or, on another scale, the resultant
itself of these forces.

2.5



Let us return to the basic equation of inertial navigation:

E_EN =Y

Mere inspection of this formula suggests the thought that inertial naviga-
tion will assume quite different aspects according to the order of magnitude of
the two terms found in the first member. From this point of view, we are
confronted with two extreme cases. The first case is that of € = 0. In the
absence of gravitational force, Eq. (3) is resolved to Eq. (1):

. .
d”r -

E=T (L)
and the computation is reduced to a double integration.

The second extreme case obtains when the velocity Ei_is constant. This
dt
situation subsumes as an even more particular case that in which the vehicle is
motionless. Eq. (3) now reduces to:

-

g0 =—=Y.

Thus, without integration and by means of an ordinary equation the method
furnishes us with the position. In the final analysis, the technique consists
in using the accelerometer as a gravimeter, with the determination made on
the basis of the gravitational components. This procedure we shall call
gravimetric navigation.

It 1s of interest to note»ﬁhat gravimetric navigation is not completely
unworkable even when function g (¥) is known only imperfectly or not at all,
provided one accepts a less stringent definition of navigation than that which
we have adopted. Should the navigator find himself not in a homogeneous space,
but in an enviromment, where every element of which is recognizable by virtue L§
of certain permanent and unique properties, he might limit his objective solely
to the identification of his position, determined in an arbitrary system of
variables, even without any known relation to metric coordinates, similar to
that of an address in a city. The position of a point can then be determined
by the value of g at that point, even if the relation E (?) is unknown. Stated
differently, the knowledge of g will enable the navigator to situate himself
on a map whose geometric conformity with reality is more or less approximate,
but on which have been plotted precise isovalue curves for the components of E.

A strictly rigorous application of gravimetric navigation is possible if
the navigator can be assured, at least at certain moments, of his immobility.
There are a number of cases in which such assurance can be acquired with notable
ease, although obviously only st the expense of yet another violation of the
principles of endonavigation. An explorer travelling over solid ground will
find it quite natural to come to a halt in order to take his position. The



position with respect to the stars of the local vertical (as determined by a
pendulum or by the normal to the free surface of a liquid in a state of rest),
completely in keeping with the system outlined above, provides the traveller
with a knowledge of his location, as long as the points of the earth are
precisely identified by the direction of their vertical.

Gravimetric navigation has been effectively employed for a very long time.
Through its use it has been possible to assign to every point on the earth two
parameters, called latitude and longitude, which in effect characterize the
direction of the force of gravity at that point.¥ The attribution to these
points of metric coordinates, with respect to a frame of reference for
our planet, which is the proper subject of geodesy, constitutes a separate
problem, solved only some time later and in less precise a manner.

If the traveller is unable to come to a state of complete rest {(as in
the case of the navigator at sea), gravimetric navigation can still be applied
in an approximate fashion. It frequently happens, in particular, that the
magnitude of instantaneous acceleration gig is too considerable to be

dt <.
disregarded with respect to E, but that its mean value, within a well chosen
time interval, is on the contrary negligible. Egq. (3) can then be
reduced to Eq. (4), provided that mean values are taken for g and y
Gravimetric navigation can then be reintroduced by employing an accelerometer
of very long-period which behaves like a lowpass filter for y(t). In this
manner the navigation of a ship can be assured by defining the vertical by
means of a long-period pendulum, such as a Fleuriais gyroscope, and by main-
taining as constant a heading and speed as possible, so as to minimize the
mean value of acceleration, with the course and speed variations caused by
the agitation of the sea filtered out through the action of the pendulum.

In all instances in which the use of these expedients provides insuffi-
uracy - particularly if the mean value of.gff is not negligible -
at<
there will be no alternative but to measure ? as precisely as possible and
to integrate Eq. (4). One thus arrives at the final form of inertial
navigation. It will be observed, however, that there exists between inertial
and gravimetric navigation (along with its traditional refinements) no break
or discontinuity, but that in fact the former is actually a particular case
of the latter.

@]
’—J
]
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3. Precision of Inertial Navigation

3.1

Let us turn back now to Eq. (4) and consider what degree of
preeision or accuracy we may expect with respect to vector r after its
integration up to time t.

¥The fact that the earth constitutes a non-Galilean reference marker introduces
certain complications to be discussed below.

/9



Let * be the vector which defines the true position, and ¥ + gf the
vector which defines the estimated position.

Vector v is defined by Eq. (4):

-

&r - - -
E—8n=x{).

Vector 7+ gf is determined by the computations of the navigator who
measures y with an error of yaand errs with respect to g in two ways: on the
one hand, he takes g at point r»f 3? and not at point 7; on the other hand, he
may commit a systematic error 8¢ with respect to g because of an imprecise
knowledge of the gravitational field. Thus we have:

dtz(r+8’)—g(r+8’) —Y(l)+8Y) (t)

—

Whence, by subtraction and assuming the errors are small:

d?

dt’ 57 — grad g 81 5y + 8¢

(5)

It will be seen that the+pharacteristic error with respect to g is added
to the error with respect to y. Since the chances are that g will be known
with far more precision than ¥ will be measured, the effect of this
is rather slight,

The preceeding equation, which is a lineér differential equation of time /10
function coefficients, defines the error r§. Its 1ntegral will obv1ously bring
into play the initial values of position and velocity &% and (dar ) .

at_
0
302

Let us limit our examination to a few simple particular cases.

Let us suppose, first of all, that the navigation is unldlmen81onal along
an axis Ox. Vector ¥ is reduced to a component x, g, and y with their projec-
tions g and y on Ox. Eq. (4) is now written:

g@) = ()
}

and the error equation:

2 d |
-31—283:—3—5813=3Y+331

a) If the gravitational field E is uniform. We have only:

d28‘t



The error is derived by double~squaring the error for (y + g). If, for
example, &(y + g) = 8yy = Cont, we have:

. L 2
8x=810+8$0'l+i870‘l-

The initial position error is preserved completely, the initial velocity
error gives a term at t, the error for vy gives a term at t2,

b) If the gravitational field is linear at X, 3g is a constant. Let us
dx

assume it to be positive, and set:

The equation without second number (5) yields a general integral of the
form:

sz = Ae¥ + Be™

This means that even when there is no error with respect to y, the
position error will contain a term which increases exponentially in time. By
introducing the initial values of the error Gxo and 6)'{0, we can write: /11

81 = 8y ch At + -8—;[-“ sh kt.

When an error 8(y + g) is added, the equation containing the second number
must be integrated.

If 8(y + g) = dyo = Cont, we easily find:
' g 30 w_ e
8z =8z ch kit + % sh k¢t + (ch kt — 1) e

Even in the absence of any initial error, the measurement error Svo
results in an exponentially increasing position error. In this case, Jjust
as in the one preceeding, inertial navigation may be described as unstable.

c) If dg is constant but negative, we set: dg _ K2
dx ax =~

In the absence of error with respect to y, the position error now evolves
according to the law:

' R
8z = 8x,cos kt + —k—"‘sm kt

10



and for

8{r+ g =238 ‘
31, . 8y
8§z = 84 cos Kkt 4 Tvo sin kt + (1 — cos kt) -%'-

»

The error 8x is now oscillatory and limited in amplitude. Inertial
navigation can be described as stable.

Comment I. Even in this latter case, one must be careful not to state
that the limited character of 8y, whatever may be the function 8y(t), assures
the same character for error 6x. The equation without the second member, in
fact, contains no damping term, so that a sinusoidal error 6yg and of
pulsation k would result, through resonance, in an indefinite increase in 6x.
However, if we assume a probabilistic viewpoint and envisage an error having
a continuous frequency spectrum, this eventuality may be disregarded.

Comment II. Let us count the abscissas on Ox, beginning at the point at
which g is cancelled. It will be seen at once that the error dx is equal to
the abscissa of a heavy material point having at the instant t = O the position
and initial velocity 8xp and 8% and subject, in addition to gravity, to
acceleration dy.

By now envisaging a form of navigation of three degrees of freedom in a
spatial region sufficiently limited to permit the consideration of gfad g as
constant, we can always employ a reference trihedral such that this tensor
contains only diagonal terms. The errors on the three axes will develop inde-

pendently, following the preceeding forms, while the stability factors will
follow the three directions bound to the respective values of: 6gx , Sgy,
Sx Sy

dg, . However, the general properties of the Newtonian field, whose diver-
Oz
gence is zero, implies that one at least of these gquantities 1s positive.

There always exists, therefore, in free space at least one direction in
which inertial navigation is unstable.

For example, if we place ourselves in the vicinity of the Earth, inertial
navigation is stable horizontally, the pulsation k having the value ,\//E
£

The corresponding period is 84 meters. This is the period of oscillation, on

a perfectly flat and polished billiard table, horizontal at its center, of a
billiard ball free of friction. In the vertical direction, inertial navigation
is unstable, with the coefficient occuring in the exponential having the wvalue

Vi

11



3.k

R The properties discussed above, with respect to accuracy, must obviously
play a predominant role in any study of the applications of inertial navigation.
One might pose the question, a priori, as to whether the imposibility of
measuring that part of the acceleration which is due to gravity, and the need
to substitute for such measurement a knowledge of this acceleration as a
function of position, constitutes a strength or weakness of inertial navigation.
The answer is a guarded one: everything depends on the structure of the
gravitational field. 1In a direction in which the gravity gradient is negative,
this circumstance limits the error; in one in which the gravity gradient is
positive, it amplifies it. In the case of three-dimensional navigation, there
are always directions for which the error will be amplified.

Inertial navigation will therefore be limited to applications of two
types:

- three-dimensional applications, but rigorously limited in time in
order to maintain acceptable accuracy;

- long-duration applications, but of a limited number of dimensions in
order to assure stability.

4. Angular Navigation /13
4.1

The time has come to return to a problem which we have temporarily dis-
regarded: the problem of angular navigation. We have already noted that this
procedure can be reduced quite simply to a series of star sightings. Because

of their enormous distance in comparison witli the range of even our
most ambitious space vehicles, stellar bodies constitute quasi-perfect directional
references. The visibility of these stars, however, is far from being

universally gssured. The determination of their direction - particularly if
reliance is to be placed in automatic equipment - entails a considerable
number of difficulties relating to the very faint radiation energy level which
serves as an indication of their presence. It would therefore appear to be

of interest to resolve the problem of angular navigation itself by means of
experiments interior to the system. Ideal, unrestricted endonavigation may be
realized in this manner.

One might conceive of attacking the problem through a simple transposition
of linear navigational methods. The study, using a suitable number .of well
distributed accelerometers, of the apparent gravity field on board a vehicle,
or the direct employment of angular accelerometers, the operational principle
of which obviously derives from that of the linear accelerometer, would permit
the measurement of the angular acceleraticns of the vehicle and the deduction
therefrom, by double integration, of the quantities which define its orienta-
tion - Buler angles, for example. But the principles of mechanics enable us
to do far better.

12



In the expression which defines Ehe ipparent gravity we have in fact taken
note of the presence of the term - 2 wy AVy, correspgpding to the Coriolis
acceleration. This means that the angular velocity we of the vehicle can be
* demonstrated by an experiment in mechanics carried out on board. More pre-
cisely, the difference between the sensible forge required to keep at rest the
mass m and that which imparts to it a velocity V., constant and known, provides
two components of 3é. A second experiment of the same nature, involving a
velocity Vf of different direction, accomplishes the determination of this
vector. The accuracy of the measurement obviously increases with the relative
velocity. Thus, on-board experimentation with material masses in relative
rapid movement assumes a fundamental importance and leads us quite naturally to
a consideration of the paramount role of the gyroscope.

4.2 /14

In fact, if one wishes to experiment with a mass m, in rapid movement,
without having it almost instantaneously escape the control of the experimentor,
there is practically speaking no other alternative but to impart to it an
oscillatory or circular motion. The first, or oscillatory, principle, which
is occasionally recommended, results in the use of vibrators similar to tuning
forks. However, it is the second approach which is almost universally adopted.
By experimenting with a simple revolving rotor, rapidly rotating about its
axis and suspended without friction about its center of inertia, we can in
fact approach this problem in an altogether satisfactory manner. The mainten-
ance of the circular movement of the elementary masses is assured by the simple
play of the solid couplings of the rotor; the effects on these elementary
masses of the static term of the apparent gravity are destroyed, and those of
the Coriolis term are added. The theory of the device resolves to the
application of the kinetic moment theorem which, by means of the gyroscopic
apprximation, is expressed by the well-known formula:

C=onln (6)
where I is the kinetig moment of the gyroscope, 3 is the angular precession
velocity of its axis, C is the external coupling which is applied to it.

Let us install a gyroscope of this kind on board our vehicle, subject to
such linkages that it will accompany the vehicle in its translational move-
ment, but will be entirely free in rotation, disregarding the action of a
coupling 3, which»is controllable and measurable. Let us at every instant
adjust the value C so that the axis of the kinetic momgnt remains aligned along
a,fixed direction of the vehicle. The measurement of C and the knowledge of
IQ will enable us to define, at every instant, the component of e, normal to
that direction. A second experiment, involving a direction different from
the first (in practice, perpendicular), will conclude the determination of
e itself. The device thus realized constitutes a gyrometer. In actual
practice, for reasons of precision, we will prefer to use gyrometers of a
single degree of freedom, which furnish only one component of the velocity 3e-
Three gyrometers of this type, with their sensitive axes oriented, respectively,,
along with three axes of the moving trihedral, will provide the three ﬁe

13



cémponents along these three directions, and we shall be able to arrive at the
quantities which define the orientation of the trihedral by simple integration.

4.3 /15

There is another way of attacking the problem. Let us imagine that we
place on board a vehicle a solid moving frictionlessly about its center of
inertia, situated, at the moment of departure, in a known orientation and
without initial angular velocity. This solid will preserve the same orienta-
tion during the entire voyage. It will obviously solve the problem of angular
navigation, whether it is employed to determine the orientation of the vehicle
with respect to it, or whether there are mounted on the so0lid itself linear
accelerometers to furnish directly the acceleration components in the fixed
axes. However, this procedure, although theoretically conceivable and
occasionally proposed, would be unacceptable in actual practice for considera-
tions of accuracy. It is, in fact, characterized by the proportionality of
the second derivative of the angular parameters to the coupling perturbation,
with all the troublesome consequences that this entails. Once acquired, an
angular velocity develops a disorientation which increases with time, even
if the perturbing coupling has disappeared; a constant source of perturbation
in the coupling produces a devigtion which increases as the square of the time.
Inherent in the method are the same defects which attach to the measurement
and integration of angular accelerations.

Let us replace the solid without initial velocity by a solid which this
time is invested with a very great velocity of rotation about its center of
revolution and is likewise suspended without friction at its inertial center.
We now have a free gyroscope. A free gyroscope moves only in the direction
of its kinetic moment, and in that direction alone. It will thus be necessary
to supplement it with a second device, of kinetic moment not parallel to the
first (in practice, perpendicular), in order to accomplish the determination
of the vehicle's orientation. However, the direction thus indicated:is
infinitely less subject to and affected by perturbations than in the
preceeding case. Reasoning, for example, on the basis of a constant perturbing
coupling, it is immediately evident from formula (6) that the increase in the
deviation as a function of time will be linear and not parabolic, and that the
abscissa of the intersection of the straight line and the parabola is given,
for equal inertia, by @t = 1. This is the time, extremely short, which the
gyroscope requires to turn one radian. Thus, it is practically certain,
considering the operating speeds attainable by gyroscopes, that the ratio of
the deviations in the two cases, increasing linearly with time, will already
be in the order of several thousandths of a second following the application
of the perturbing couplings. Another consequence of formula (6) is obviously
the arresting of the deviation when the coupling perturbation is suppressed.
The measurement of previous angular velocities is cancelled.¥

¥This cancellation is of course only apparent and no velocity discontinuity,
which would violate the principles of mechanics, takes place. When the perturb-
ing coupling is suppressed, the movement of the gyroscope axis does not dis-
appear but winds along a cone of imperceptible angle.

14



The practical unfeasibility of providing an on~board platform /16
with permanent orientation secured through inertia alone does not negate
the interest which the installation of such a platform arouses. What it does
do is to demonstrate that permanence of orientation must of necessity be
achieved through a follow-up monitoring system. The platform will have to
carry its own orientation reference instrumentation, free gyroscopes or gyro-
meters. Points of articulation will be motor-drive in order to combat the
angular deviations - or angular velocities - detected by these instruments.
Installed on the platform will be accelerometers to provide direct readings of
the sensible acceleration components in the absolute axes.

bk

Finally, an inertial navigation system may be designed to employ one of
two extreme concepts. The first comsists in linking the accelerometers to the
moving trihedral, whose orientation is reconstructed either by integration of
gyrometers also bound to the moving trihedral or by reference to free gyro-
scopes.

The second method consists in placing the accelerometers on a stabilized
platform, whose permanent orientation is assured by a phase-locked monitor-
ing system based on the readings of gyroscopes mounted on the table. As a
variant approach, the stabilized platform may be subject to laws of
orientation other than that of parallelism to an absolute trihedral, provided
its angular evolution remains slow and controlled.

The second system is the one almost always employed. The fact is that
it embodies considerable advantages. On the one hand, computations are
reduced to a minimum. On the other, the angular-detection gyroscopic equip-
ment functions in a zone of very low amplitude around zeroc - a circumstance
eminently favorable to its precision. Conversely, this system is heavier and
of greater mechanical complexity. During the planning stages for the inertial
navigation equipment for the US "Apollo" lunar exploration project a compari-
son of the two systems was thoroughly debated. The decision ultimately
reached will preserve the conventional controlled-platform system as the
primary eqguipment, backing it up with an emergency unit operating in axes
bound to the vehicle.
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4.5.

Whatever the system type adopted, gyroscopic instrumentation plays a basic
role. The design of high-precision gyroscopes is one of the indispensable con-
ditions of inertial navigation.

In mechanical terms, the art of gyroscopy may be defined very simply: it
is the problem of applying to a solid a system of forces whose geometric sum is /77
such as to ensure the "suspension' of the solid (that is, the translational co-
movement of the solid with and by the vehicle) and whose resultant moment with
respect to the center of inertia of the solid remains zero as rigorously as
possible.

The utilization of Newtonian forces, bound by nature to the mass, would
be highly desirable, if it were possible. However, such forces - except for
the infinitesimally small effect that may be derived from the displacement of
near-by masses- - are essentially uncontrollable. It is thus necessary to em—
ploy force-generation phenomena having no natural bond to mass. Coupling
nullity can be achieved only by common reference to a precise geometric con-
figuration, to which are tied in the strictest possible manner both the center
of inertia and the torsional stress. The first condition poses a metrologic
problem of balancing, common to all gyroscopic techniques. The second imposes
the need for very careful selection of force-generati’g phenomena.

The utilization of material bearings - that is, the involvement of contact
forces between machined solids - was the first gyroscopic suspension technique,
in an effort to minimize, through the use of ball bearings as perfect as poss-
ible, the unfavorable effect of friction, which was the specific liability of
this approach. Important progress was made with the appearance of the floating
gyroscope, a technigue foreshadowed by the gyroscopic compass of marine navi-
gation. Suspension is ensured by the play of pressures brought to bear by a
liquid on the geometric surface of reference. Lf the apparent gravity is uni-
form, (this always being the case on a stabilized platform), if the center of
inertia of the suspended mass coincides exactly with the keel center, and
finally if the mean density of the suspended body is equal to that of the liq-
uid, the torque of the pressures on the keel automatically ensures the trans-
lational driving or co-movement of the floating body without the need for any
coupling whatsoever. Any viscosity on the part of the liquid obviously in-
validates this conclusion, but viscosity has the advantage over dry friction
of cancelling itself with velocity. Thus, a floating gyroscope utilizing a
liquid of as low a viscosity as possible, working about zero, may make an ex-
cellent free gyroscope. Viscosity has the additional advantage of being cap-
able of precise determination and of producing effects which are exactly linear.
A floating gyroscope using a liquid of non-zero but well-defined viscosity may
fupction as an integrating gyrometer with no external intervention or as a
gyrometer with one degree of freedom if its movement is prevented by a con-
trolled coupling. Proper operation as an integrating gyrometer makes mandatory
the use of a stabilized platform, since the integration of angular velocity
about an axis cannot be exploited unless this axis has itself a quasi-fixed
direction (Fig. 2).
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Fig. 2.--I%: kinetic moment; DA: angular de-
tector; GC: coupling generator; T: table;
M: motor.

The floating gyroscope is at the heart of present-day inertial navigation
applications. Other suspension techniques, aimed at further improving gyroscope
performance, are in the study or development stage. The majority of these tech-
niques are based on the following idea. If we are able to set to work strictly
normal surface forces and if we apply these forces to a spherical surface, we
can be certain of the existence of a resultant passing through the center of
the sphere, whatever may be the distribution of pressures at the different
points of the surface. The normal forces may be:

— non-viscous fluid pressures in any movement, leading to the concept
of the pneumatically suspended gyroscope;

- electrostatic actions on conductors. Here, the corresponding variant
is the electrostatically suspended gyroscope. This type of suspension
is suitable only for moderate apparent gravity and requires some sort
of monitoring system (due to the absence of a natural equilibrium,
which is incompatible with the properties of an electrostatic field);

~ electromagnetic actions. However, the reduction of such actions to
normal surface forces is automatic only by means of a conductor com-
pletely devoid of resistivity, involving recourse to superconductivity,
with all the technological complications which that entails. In com-
pensation, natural stability for the suspended body is acquired.

Whatever the suspension technique employed, the problem of the centering
correction retains the same high degree of importance. A structural imbalance
will lead to deviations which are proportional to the sensible acceleration.
An imbalance due to deformation of the moving apparatus under load results in
errors proportional to the square of the acceleration. However, this effect
can be avoided if the condition of isoelasticity is fulfilled. The elastic
displacement of the center of inertia then takes place in the same direction
as the resultant of the torque and all coupling is consequently eliminated.

\
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4.6.

Comparing the properties of angular and linear navigation, two essential
differences are evident:

- on the one hand, angular velocities are measurable by internal experi-
ments, while it is only the linear accelerations that have this
capability. Thus, the necessary preliminary stage of angular naviga-
tion involves only a single additional integration, and not two, and
the entire endonavigation problem is one of the third order;

~ on the other hand, there is the possibility in principle, in the case
of angular navigation, of avoiding all measurements and integration
through the device of a reference frame parallel to the absolute re-
ference frame which, if so desired, can be viewed as a perfect mechan-
ical integrator of velocities or accelerations. If the same operation
were to be attempted in the case of linear navigation, it would be
necessary to free the test mass whose function we have stipulated as
that of following the movement of the vehicle. This free mass would
constitute a perfect acceleration integrator. However, this procedure
is not acceptable because the mass would leave the vehicle and the
determination of its coordinates would not be an internal operation.
One might just as well, therefore, take direct readings of the char-
acteristic points of the fixed trihedral. However, there is one im-
portant exception. If the trajectory which we are seeking to impose
on the vehicle is one of free fall, that is an orbit of the gravita-
tional field in which it is navigating, the sensible acceleration must
be zero at every instant. In principle, guidance can be directly en-
sured by freeing the test mass and maneuvering the craft in such
ways as to maintain this mass in a state of relative rest. In this
way, guidance of a very high order of accuracy is achieved, thanks to
the feasibility of a relative navigation providing direct access to
the discrepancies between the effective trajectory and the desired
trajectory, which can, by way of exception, be realized. A classical
example of the employment of this method can be seen in the case of
certain aircraft especially designed for the experimental study of
weightlessness, which are maneuvered by the pilot in the manner de-
scribed above, using s simple ping-pong ball as a test mass. The method
has also been exploited in a US program aimed at achieving, for research
purposes, satellite trajectories totally free of any non-gravitational
Perturbation.

4.7.
It might be well at this point to examine the effect which the errors of
angular navigation are likely to exert on the precision of the overall navi-

gational process.

Regardless of the specific modalities underlying the application of this
form of navigation, it will be characterized by an angular velocity vector
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error, the effect of which on the orientation parameters will be more or less
cumulative. The result will be increasing errors for the acceleration compo-
* nents, which will produce increasing errors in navigation, even when we have

determined that such navigation is stable.

In view of the obligatory deviation introduced by inertial amgular naviga-
tion, there is consequently no such thing as strict endonavigation exempt from
secular errors. Naturally, however, in cases in which the navigation is stable,
the increase of the errors will be far slower. A constant error in an angular
velocity term is reflected in this case in a linear increase of the position
error.

If the reference trihedral (materialized or not), which is supposed to re-
main parallel to the absolute trihedral, has turned by the small rotatiom vector

g, r?su£ting from a fluctuating error §& in the angular velocity vector, we have
€ = Sw dt.

With GYO the instrument error with respect to ¥V, the error equation is
written:

a%sy
dt2

- >
r €

A Y. (7)

>
_gﬁa'g(.‘} =(S'Y0_

It is possible to establish an»interesting general propgyty with respect
to the reconstitution of the local g vector. The error for g includes an error
in computation for the absolute components Sg. and a supplementary error coms
mitted by the navigator in transfering these Components onto deviated axes. We
derive directly from Eq. (3):

=AY 3G =8 F A — A Y
On the other hand: S, =¢Ag
whence: >
- d28r - - - -
31 +38 =7z —drt+tecAgty 7
> = dr  d*r -
and dg==¢A T e 3, (8)

The first term alone contdins a secular part, gg the further supposition that

->
%% increases indefinitely. 1In many cases, when §E§ has a mean value of zero or

is small with respect to E, Eq. (8), practically speaking, ensures for 6§'a very /21

small value. The navigator then reconstructs a vector g which varies very little
in space from the true gravity vector.

5. Navigation in Bound Movements

Following the definition of the term in mechanics, by bound movement we
understand a case in which the moving object is compelled to remain on a cunve
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or surface, either naturally because of a bond or artifically because of a sys-
tem of navigation which does not call upon inertial procedures. The first case
is illustrated by a ship; the second by an aircraft which maintains its alti-
tude with the help of an altimeter, or a submarine.

5.1.

Let us first consider navigation on a known curve (Fig. 3).

3

Fig. 3

The navigational computation will consist in identifying the tangential

acceleration aty%-%; whence the equation:
t

dzs
ac2

> > > -
=Y T+ g T

..)
where 1t is the unit vector of the tangent, a known function of s.

-5
> Let us turn to a consideration of the stability. Let &§y be the error for
Y which causes the error és for s. We have:

>

3. - - d_ »; p———— -
d28—75=(Y+g)d—:8.¢+187+‘rgradg~18$

-> >
T > .
Now, g§-=-% » R being the radius of the curwe and n the unit vector of the

principal normal.

On the other hand:

- - 1. (13 2 V2
TER BT S
whence: -
d2 - TS e
;17583 [‘r grad g- v + _2] 3 = t- 38y (9)
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If the velocity is small, the stability criterion is the same as in recti-
linear unidimensional navigation. However, the velocity exercises a destabiliz-
" ing influence. The condition of stability is written:

V2 -> ->
——~ < -1+ grad g .
R2

>
T

k4 grad g - T is the gradient of E in the direction of t. It depends only on

the tangent to the curve. It must not be confused with the derivative from

from - s of the tangential component g * T of the gravity (at the surface
of the Earth the first quantity equals.ﬁ; the second - zero).

5.2.

Let us consider navigation on a surface. The general problem is quite com-
plicated. In a simple case, when the movements are slow and hence the ac-
celeration normal to the surface is small the study of the stability of
navigation about a point can be likened to the study of navigation in the tan-
gent plane. It is therefore the structure of the gravity gradient in the tan-
gent plane that is decisive in terms of stability.

If the surface is a level surface of the gravity field and if it is convex
like the terrestrial geoid, stability of linear navigation is everywhere ensured.
If the angular navigation is inertial, the deviation of the angular reference
frame comprises the stability, as we have already had occasion to note.

6. Navigation with a Non-Galilean Reference /23
6.1.

It may be desirable to navigate with a non-Galilean frame of
reference - the Earth, for example, whose absolute movement is itself known.
It is always possible, in this case, to begin by fixing the position of the
moving body with respect to a Galilean mark with a subsequent change of re-
ference by means of a simple transformation of coordinates. However, this method
may be detrimental to the accuracy of the calculations, particularly in a case
in which the relative displacement of interest to the navigator is small in am=
plitude with respect to the absolute and driving displacements, of which it con-
stitutes the difference.

It may be preferable in this case (and there is no impediment) to pase
the navigational computation on the driven reference, which we shall
refer to as the navigation reference. Quite clearly, all that is required is to
substitute, in Eq. (4), the Newtonian attraction g for the apparent gravity in
this system. The equation to be solved will then be the following:

a2r > > - dr -
) - gy () + Zwe A e =Y (t). (10)
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The static apparent gravity § =g - Ee is a well-defined function of T
(possibly of time also);  , the driving rotation, may also be a function of
time. However, if the movement of the navigation reference is a constant ro-
tation about a point in uniform movement (the case of the Earth with good
approximation), time does not figure in the first member.

There are several precautions to be taken with regard to angular naviga~
tion. If gyroscopes are employed which are bound to the axes of the vehicle
the relative rotation velocity of the instrument must be calculated by the
difference between the absolute measured rotation velocity and the drive ro-
tation velocity which is known a priori, with subsequent integration in order
to determine the orientation of the vehicle with respect to the navigation re-
ference.

If a platform is used, it is essential to maintain it parallel to the navi-
gation reference, in order to measure directly the accelerations by their com-
ponents in the calculation axes. There will be imparted to the platform the
drive rotation velocity & thanks to the coupling motors with which the gyro-
scopes are equipped. The platform can be readjusted with respect to stars of
known directions at every instant in the navigation reference.

It is of interest to examine the case of gravimetric navigation with a
non-Galilean reference. The relative rest characterized by dr _ 0 gives:
> > dt
- ga = ‘Y.

The measurement of ? thus defines a point of the reference with which the /24
vehicle coincides. It is still necessary, of course, to know the orientation
with respect to the vehicle of the navigation reference, or to have a platform
which is parallel to the axes of this reference.

It might be noted, however, that even should reference to the navigation
mark be lost, 'useful information can still be obtained if one assumes
that it is possible to achieve relative angular rest of the vehicle (or of the
platform) with respect to the navigation reference frame. The absolute angular
velocity of the vehicle, which can always be measured, is then identified with
the rotation velocity @, of the navigatigp reference. It is thus possible to
measure in the axes of the vehicle both w, and §a. One is thus able to find one's
position at points in the navigation reference characterized by a given value
of the angle formed by these two directionms.

These principles, applied to navigation on the surface of the globe, lead
to methods which have been known and in use for a long time:

- determination of latitude and longitude by fixing the local vertical
at a preciselyknown hour;

- the possibility, by a purely inertial experiment, of determining the
direction of the pole with respect to the axes of a vehicle at rest,
or of the local axes bound to the reference (this being the purpose of
the gyroscopic compass);
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-~ determination of latitude by an inertial experiment, latitude being by
definition the compliment of the angle formed bu the apparent gravity
and the line of the poles, that is the vector we

The gyroscopic compass has long been in use at sea. On the contrary, the
determination of latitude by means of the properties of the gyroscope is not
widespreadl t is easy to see that latitude determination is in fact more diffi-
cult than the determination of course, so much so, indeed, that for a long time
the technique has been held to be utopian. If we concede that the essential
perturbations in a gyroscope are the result of centering defects, it will be
recognized that the perturbing couplings have axes which are essentially hori-
zontal. In gyrometry experimentation, therefore, it is always of advantage
to employ vertical control couplings. While this is possible in the measure-
ment of a horizontal angular velocity, it is impossible in the measurement of
a vertical angular velocity, for the reason that the control coupling and the
component of the measured angular velocity are necessarily orthogonal. The
horizontal components of we, whose ratio determines the course heading, are
therefore better known than the vertical component, which is required for lati-
tude determination.

7. Inertial Navigation Applications

Ballistic Missile Applications

Having examined the fundamental principles of inertial navigation, let us
briefly review its different areas of application, beginning with the case of
the ballistic missile.

We have seen that three-dimensional inertial navigation is always subject
to instability and must therefore be limited to very brief intervals of time.
The passage through the atmosphere offers, in particular, an opportunity
favorable to the use of this method. The optimal stiuation called for by
economy of propulsion as well as thermal and mechanical structural resistance
leads to accelerations in the order of 100 m/sec? acting during a period of
time in the order of one minute. Thereafter, the missile is located in a vac-
uum and is subject only to the force of grav1ty. Inertial navigation re-
stricted merely to the verification that Y = 0 is evidently of little use dur-
ing this period. Its role consists in furmishing, at the termination of the
powered-flight stage, the initial conditions which will permit the calculation
of the subsequent Keplerian trajectory. Among these initial conditions, veloc-
ity is of greater importance than position, this fact being an aid to accuracy,
since velocity is obtained through a simple integration.

Inasmuch as the operating time is small with respect to the 84-minute
period which characterizes stability in the horizontal sense, as well as with
respect to the time constant, of the same order of magnitude, which describes
the instability in the vertical sense, neither this stability nor this insta-
bility play any practlcal role, the errors being those which result from the
integration of 6y.
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° installation
The inertial / . platform can be kept parallel to the absolute axes, if it
is preferred to carry out the computations in these axes. The platform may also
* follow, in the diurnal movementofthe Earth-bound axes with which it coincided
at the moment of launching. The initial precision adjustment of the platform
obviously poses a difficult problem, all the more if the missile is fired from
a surface vessel or submarine.

An eventual resumption of inertial navigation during re-entry into the at-
mosphere has been occasionally discussed. The principal difficulty in this
connection derives from the attitude of the platform, which continues to deviate
during the entire Keplerian flight. Stellar recalibration before - '
atmosphere would be highly desirable.

8. Horizontal Navigation Applications

8.1.

This application pertains to the navigation of aship, alrczaf;,or submarine which
must follow, strictly or approximately, the terrestrial geoid,

- with the distance to the geoid, if it is not automatically zero,
measured non-inertially.

The problem thus concerns a case of surface-bound navigation. To simpli- /26
fy matters, let us limit ourselves to the study of navigation on a great circle
arc, imagining the Earth to be spherical and, for the time being, motionless
(Fig. 4).

. . > .

Since the tangential component of g is zero,
the navigational computation is reduced to
d2s > > > ->
T, = Y - T (¥ - T is the sensible horizontal ac-
dt

celeration). To obtain y . T, we could of course
measure all the components of y in an arbitrary
system, a stabilized platform for example, and
project them on the tangent to the circle. It is
obviously simpler to ellmlnate the measurement of
the vertical component of Y, since it need not
concern us at all. This brings us to the use of
only two accelerometers (one in the plane problem)
carried by a platform which must obviously be
maintained rigorously parallel to the local hori-
zontal plane. If this condition is fulfilled at
departure, it will be preserved, provided there

Fig. 4 is imparted to the platform an angular velocity
such that:
w___.g___._:.]_'_d_s.:Ldet (11)

> ->
setting Y =Y * T, and ©being the meridian arc corresponding to arc s.
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This operation can be carried out by a one-time integration of the accele-
ration measured on the platform, by calculating w by the formula given above,
"and by imparting to a gyrometer mounted on the platform the precession velocity
w, thanks to the use of an appropriate precession coupling. Since the platform
is phase-locked to the moving gyrometer housing, the angular velocity w is cer-
tain to be imparted to the platform it self.

This procedure thus provides a means of determining the local vertical. /27
The navigation problem can now be resolved:

-~ either by determining this vertical with respect to the stars, if they
are observable;

- or by installing on board the vehicle a supplementary platform, stabi-
lized in absolute space, perpetuating the initial orientation of the
forst platform;

— or by integrating the rotation velocity w measured by the gyrometer, or
by re-integrating the acceleration y measured by the accele-
rometer.

The last two methods, which respect the principle of endonavigation, are
fundamentally equivalent; both introduce an error which increases with time.

8.2.

Let us now consider the accuracy of the operation. The system will not be
perfect unless the platform was horizontal and without angular velocity at
launch, and unless the measurements were rigorous. In point of fact, the table
will make a small angle o with the vertical (Fig. 4). The accelerometer, in-
stead of strictly measuring the horizontal acceleration of the moving vehicle,
is also sensitive to the vertical reaction component, following the platform,
which ensures that the movement will be circular. The measured acceleration y¥*
thus has the value:

Y*=Y—“[8—R(%§)’]+8Y

and the measured angular velocity w* is written:

w* = u + Sw.

In these formulas, 8y and 8w represent the instrument errors due to the
accelerometer and the gyrometer.
Relation (9) evidently applies to the measured parameters, whence:
: o (do\s o
f}y——a(g——R E))+8Y dt = R (0 + Sw).
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Integrating once and bearing in mind that:

we obtain ' dz9 d
y=R3 0=20+a

. da [5:_ do\? 3y ddw (12)
@ ek (3)]

This formula permits the calculation of platform error *# . 1In the absence
of instrument errors in the measurement of Y and W, it will be seen that the
platform oscillates with a periodicity defined by the pulsation

VED &7,

R -~ (ot

For the low speeds of ships, (g% 2 is practically negligible with respect /28
£
to

R The period is then approximately 84 minutes.

It can be very easily demonstrated that a pendulum designed to have an 84-
minute period at rest (Schuler pendulum) provides a perfect replacement for the
controlled platform. When its point of articulation is shifted, it functions
as an exact mechanical integrator of the inertial navigation equation. In act-
ual practice, such a pendulum is not feasible, since it would require a suspen-
sion not possible at the present-day state of the art.

The role of the instrument errors is to excite the platform oscillations
at the Sculer frequency - oscillations which exist even when such errors are

s e s s do .
absent, unless the initial conditions a = O, Fraie 0 are strictly met.

Let us now consider the navigation error §9. The value of @ provided by
the instrument, or 0%, may be calculated by integrating w* or
%*
f‘% dt. The equality of these two quantities is ensured by definition, and thus

the values found for O% will evidently be identical. Take, for example:

0*=Jm*dt=9+j8mdt+¢-
This gives: .

G=SB—J‘Swdt.

*The fact that o is devoid of secular error is a consequence of Eq. (8), which
indicates that the error in vector g'does not affect its direction. This pro-
perty is not strictly generalizable to bidimensional navigation, since the
latter introduces a vertical component of €.
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whence, by substituting in Eq. (9):

%529“9. [%_ (%‘t?)’] =y [%_ (‘-Z?)’] .J’awée,‘ (13)

This equation does not differ from that provided by the general theory of
navigation on a curve. The second member presents, in fact, the tangential
component of the total error committed in the measurement of the acceleration.
Had we measured by comparing the orientation of the moving platform with that
of a platform materializing the absolute axes, we might also have written:

so=a+fs(.»dz

Sw being the error of the gyrometer used to control the permanence of the /29
orientation of the second platform. Eq. (11) remains correctgthe angle

being now interpreted as the angle caused by the deviation of the second plat-
form.

8.3.

This simplified study has cast some light on the principal properties of
horizontal inertial navigation. These properties may be summarized as follows:

1. Stability is ensured in the sense that there is available a platform
for the determination, without secular error, of the vertical. The second
number of Eq. (10) contains only quantities of mean zero value.

2. If it is impossible to fix the vertical thus marked with respect to
the stars, a secular error for position is introduced through accumulation of
the errors Sw.

3. The accuracy of the operation is exactly the same, whether one proceeds
by an integration of w or by a new integration of y. In both cases, the accu-
racy is affected by the errors in the two parameters. An attempt might be made
to judge the two methods by introducing the platform control errors, thus in-
validating the exactitude of Eq. (11). It is found that the introduction of a
control time constant, for example, does not permit a universal choice between
the two procedures, since their comparison depends on the law of movement.

Let us emphasize this somewhat controversial point. Horizontal inertial
navigation can be presented under two forms which appear quite different. For
some investigators, the position is determined by double integration of the
accelerations with the proper movement imparted to the accelerometer support
table in order to ensure that these accelerometers operate in the proper axes.
For others, a perfect vertical is first achieved by insensitizing a pendulum
to accelerations, with the position then calculated on the basis of the angle
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formed by this vertical as it turns *. In fact, the difference between these
two presentations (each of which is correct and each of which has its own did-
‘actic value) is a purely semantic one. In any event, one is led to the same
equations and to the same instrumentation, even if there is a difference in
the execution of the final integration which, as we have just seen, is without
influence on the accuracy of the result.

4, Stability of navigation is ensured for low velocities. It decreases /30
at higher velocities and is finally altogether cancelled at satellization
velocity. If one day a vehicle with a super-orbital velocity capability were
designed to remain in the Earth's atmosphere, because of inverse lift, inertial
navigation would be unstable for that wvehicle.

Stability does not depend on the availability of a platform fulfilling
the Schuler condition. It will be ensured even in the event of horizontal
navigation with the aid of a platform which is stable with respect to absolute
space. Stability depends only on the structure of the gravitational field.

8.4.

Let us finally introduce the rotation of the Earth. Since navigation
must provide geographic coordinates, it is most simple to reason on the basis
of a reference frame carried forward by the diurnal movement. The modifica-
tions brought by the rotation are the following:

The rotation imparted to the platform must be the vectoral sum of the re-
lative rotation, calculated by integration of the relative acceleration, and
the driving rotation, which is known. The relative acceleration is itself
derived from the measured acceleration, which is an absolute acceleration, by
subtraction of the horizontal component of the Coriolis acceleration due to
the rotation of the Earth. Thereafter, relative angular velocity or relative
acceleration is integrated. In practice, in order to simplify the calculatioms,
the horizontal axes of the platform are directed toward the cardinal points.

A well-known consequence of the Earth's rotation is the disappearance of
the secular error of course and latitude, the sole remaining error of non-zero
mean value being the longitude error.

This seems a paradoxical result. It is not immediately clear how the adop-
tion of a different reference of movement and system of computation can
transform the accuracy of the operation. Actually, the difficulty rests in the
experientially derived notion of the random structure of a measurement error.

It is customarily held that the error in the measurement of a time function is
the sum of a constant systematic error and of a random error having a more or
less known spectral distribution. All told, what this means is that there is
ascribed to the error a continuous spectrum, except for the zero frequency con-
stituted by a line. When the magnitude measured is a velocity of rotation about

* For a very clear exposition of this second point of view and a most useful
discussion of the orders of magnitude of the errors see [3].
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a material axis, the systematic error is a vector carried by that axis. The
resultant position error is the vectoral integral of the elementary error., If

the axis is fixed, these errors are cumulative. If the axis itself turns in
absolute space at an angular velocity w about one of its normals, the position
error has a mean value of zero. The cumulative effect then derives from the
frequency component.%? of the random error, but this does not correspond to a /31

spectral line and the effect is extremely weak. An inertia platform carried by
a ship turns perceptibly with the Earth, since the speed of the ship is small
with respect to that of the Earth. The polar line is therefore a direction com-
>
mon to absolute space and to the platform. The vector 6w which affects the
measurement of the angular velocity of the table has a fixed projection on the
line of the poles and perceptibly sinusoidal projections on the free space
directions normal to the line of the poles. Thus, cumulative orientation
error exists only in longitude.

This result, which is valid only in the case of a vehicle whose velocity
is small with respect to that of the Earth, obviously bears a direct relation
to the possibility, already mentioned, of determining the polar line by an in-
ertial experiment in gravimetric navigation.

9. Space Applications of Inertial Navigation

We have seen that three-dimensional inertial navigation suffers from irre-
mediable instability. It is therefore of necessity limited to periods which are
short with respect to the characteristic time constants of this instability.

The space trajectories in use at the present time are indeed comprised of
brief periods of powered flight separated by extensive periods of free flight.
The propulsion or powered-flight intervals lend themselves to the application
of inertial navigation under the same conditions as the initial launch period.
It is extremely useful in ensuring that the propulsion stage will be marked by
such strict adherence to prescribed parameters &S will hold the need for
further corrections to a minimum. The coasting periods will naturally be ex-
ploited for an adjustment of the results based on electromagnetic or optical
tracking procedures. In this way, a new powered-flight segment may be initiated
with updated data with respect to position and initial velocity, and with a
platform oriented on the stars.

These operations, which can be performed at leisure, may be entrusted to
a human navigator who will employ instruments deceptively similar to sextants
and periscopes and whose function will be reminiscent of the most traditional
duties of the naval officer. The role of optics in this area will be a pre-
dominant one, since, with the exception of those regions of the globe which are
covered by clouds, visibility is guaranteed; even the tropical zones furnish a
wealth of geographic details capable of serving as landmarks. These markers
are always available since beyond a certain altitude the space navigator never
loses sight of land, taking the word "land'" here in its traditional maritime
sense. The stars will retain their role as directional reference markers, with
the closer of them gradually replacing terrestrial landmarks as the spacecraft /32
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pulls away from our globe, whose ultimate contributiom to position determination
will be largely limited to the direction of its center and apparent diameter.
The navigational system of the already far-advanced American "Apollo" moon
project is based on just such principles. As one gains familiarity with this
program, one cannot help being struck by the high degree of autonomy left to
the flight navigator. Although supported under normal conditions by important
supplementary data from the ground, the navigator has been provided with every
facility to ensure his ability to perform his mission with maximum efficiency
even without such support.

10. Conclusion

In the matter of using measurement to reconstitute the variation law of a
quantity as a function of time, the available instrumentation is frequently
marked by certain complementary features whose very diversity brings to mind
comparative associations.

Among these comparisons, perhaps the most frequent is that of an instru-
ment capable of faithfully reproducing the rapid variations of the parameter
in question but subject to a progressive cumulative deviation, with another
instrument whose instantaneous error may be significant and fluctuating but
whose mean accuracy shows no degeneration in time. This dichotomy is reflected,
for example, in the simultaneous presence on-an aircraft instrument panel of a
course holding unit (auto-pilot) and a magnetic compass. '

In terms of the navigational problem, the integrating accelerometer is
clearly an instrument of the first type. While it is a remarkable and promis-
ing effort, there is something slightly unnatural about inertial navigation,
basing, as it does, the entire position determination procedure on this one
type of instrument alone. As such, the inertial technique appears justified
only when direct localization is impossible - by virtue of military considera-
tions, for example - or when it can be conveniently employed only at discrete
intervals, of greater or lesser separation, during which the inertial naviga-
tional method can provide a valuable interpolation.

The remarkable success of inertial techniques in low-level circumterres-
trial navigation, with its intimate relation to profound mechanical conside-
rations, will continue to guarantee these methods an assured development for
military applications. Civilian usages, on the other hand, may be less certain,
in view of the tracking facilities made available by an increasingly more ac-
curate and extensive radio navigation aid network.

In the space environment, the inherent instability of three-dimensional
inertial navigation, together with the anticipated advance in optical and
radio tracking systems, will necessarily result in the combined utilization
of different facilities and methodologies, with the predominant function as-
signed to the accelerometer and the gyroscope.
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Perhaps one day an untapped area will be found for the application of in- /33
tegral inertial navigation in the exploration of the very entrails of our
planet...if man decides, after the Voyage to the Moon, to turn his attention
to the Voyage to the Center of the Earth.
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